
Beating the System:
Managing Desktop Shortcuts
by Dave Jewell

A few months back, Beating The
System looked at how to imple-

ment custom context menus in the
Windows 95 and NT 4.0 Shell. The
feedback from this article sug-
gested that readers were inter-
ested in learning about other ways
in which the Explorer can be cus-
tomised through the various COM
interfaces which it provides.

Accordingly, this month we’re
going to take a look at shell links,
otherwise known as shortcuts. As
you’ll probably appreciate, a big
benefit of shortcuts is the way in
which they attempt to ‘virtualise’
the location and name of a target.
For example, try right clicking on
the Windows desktop and then set
up a new shortcut to your Delphi
development. On my system, this
has a fully qualified pathname of:

C:\Program Files\Borland\
 Delphi 2.0\Bin\Delphi32.exe

If you temporarily rename the
Delphi32.exe file you’ll find that
clicking the shortcut will still fire
up Delphi. This happens because
Windows contains built-in operat-
ing system hooks which gain con-
trol whenever certain operations
take place, such as renaming or de-
leting a file. When a file gets re-
named, the shell checks to see if
the old file name was referenced by
any existing shortcuts. If so, they
get transparently modified so that
they now refer to the new file name.

Moving a file is handled in a simi-
lar way, but sometimes Windows
can lose track of a target. We’ve
probably all seen the ‘waving
torch-light’ animation that comes
up when you click on a shortcut
which references a missing target.
Windows can scan the whole disk
looking for the missing target and
tries to find a match based on
name, file type, size and file modifi-
cation date – but it doesn’t always

succeed in tracking down the
correct file.

Shortcut Implementation
Shell links are implemented using
small files with an extension of
.LNK. If you’ve got any shortcuts
installed on your desktop, you’ll
probably find some of these .LNK
files if you look in the directory
C:\WINDOWS\DESKTOP. This is
usually referred to as the desktop
folder and is the default place
where Windows’ logical ‘view’ of
the desktop is stored.

There’s a one-to-one correspon-
dence between shortcuts and link
files. In fact, if you create a new
desktop link using the Explorer and
then go into the aforementioned
directory, you’ll find that a new
.LNK file has been created. If you
manually delete the .LNK file, you’ll
then see the shortcut disappear
from your desktop after a few sec-
onds. Windows is continually
monitoring file I/O within the sys-
tem and Explorer is continually try-
ing to ensure that the desktop view
perceived by the user agrees with
the contents of the desktop folder.

In theory, it should be possible
to create, destroy and edit links
simply by creating, deleting and
modifying .LNK files, but this ap-
proach assumes that we know the
internal structure of a .LNK file,
which we don’t. In any case, such a
strategy would make us vulnerable
to future changes in the format of
shortcut files. There’s absolutely
no reason to do this because
Microsoft have already provided
us with all the functionality we
need through a COM interface.

Introducing TShellLink
A .LNK file encapsulates quite a
number of different properties re-
lating to a shortcut. These include
the full pathname of the target (the
executable which we want to start

running when the shortcut is trig-
gered), command line parameters,
an initial working directory, a de-
scription string, a window state
(whether you want the application
to start off minimised, maximised
or whatever), the icon to use for
displaying the shortcut and so
forth. All this functionality is pro-
vided through a COM interface
called IShellLink. I decided that it
would be more fun to do things the
Delphi way and package up this
functionality into a component
which you can place on a form. It’s
well known that Delphi 3 will allow
you to quickly convert an existing
VCL component into an ActiveX
control which can be used, in a
language independent manner,
from many other development sys-
tems. This fact alone should per-
haps encourage you to create
components more enthusiastically
than you’ve done in the past!

Having said that, this component
is, by its very nature, relatively spe-
cialised. It’s likely to be used
mainly by those who want to write
an install program for their soft-
ware, but it also illustrates some
general principles of COM usage
from Delphi which apply, needless
to say, to the other COM interfaces
provided by the shell.

The full source code to the com-
ponent is provided in Listing 1. As
you can see, it’s a non-visual com-
ponent which inherits directly
from TComponent. In order to create
a new shortcut, you simply initial-
ise the six properties to their de-
sired values and then call the Save
routine. This is rather analogous to
(for instance) the TOpenDialog com-
ponent where you set up a number
of properties and then call Execute
to get the actual job done.

Although six properties are pro-
vided, you don’t need to use them
all if you don’t want to. For exam-
ple, assuming that you’ve already

32 The Delphi Magazine Issue 19

placed a TShellLink component
onto your form, you can create a
shortcut with as little as three lines
of code:

ShellLink1.TargetPath :=
 ’c:\msoffice\winword\winword.exe’;
ShellLink1.LinkPath :=
 ’My First Shell Link!’;
ShellLink1.Save;

In this example, the target ex-
ecutable is set to the Word for
Windows executable, the name of
the shortcut is set to My First
Shell Link! and the Save function is
then called to save the shortcut to
disk, creating a new .LNK file. The
shell will immediately display the
new shortcut on the desktop. By
default, my component will always
create shortcuts on the desktop, at
the top level of the Explorer’s
‘name space’. However, you can
also place a shortcut into an
existing folder like this:

ShellLink1.LinkPath :=
 ’Stuff\My First Shell Link!’;

This will create the shortcut in the
folder Stuff.

The six properties give a reason-
able degree of control over the
shortcut, though I haven’t tried to

provide the full functionality of the
IShellLink interface. You can’t, for
example, set up shortcuts to non-
file objects such as printers and
you haven’t got any control over
the icon which the shell uses to
display an icon. By default, the
shell will use the first icon in the
target executable, which is almost
always what you want to happen. If
you want to extend TShellLink, you
are of course, free to do so. It
should be easy to figure out how to
incorporate extra functionality
based on the code I’ve provided.

As a value added bonus, there’s
a cute bit of extra functionality em-
bedded into TShellLink. If you set
the LinkPath property (either at de-
sign time or at run time) to the
name of an existing shell link, the
other properties will be immedi-
ately changed to reflect the con-
tents of the link file. This means
that you can use TShellLink not
only to create new shell links, but
also to examine the ‘contents’ of
existing ones.

How It Works
In our previous foray into the world
of context menus, I deliberately
eliminated all the lengthy
OLE/COM interface files associated
with shell programming so that we

could concentrate on the basics of
talking to the shell from Delphi
without getting bogged down in a
lot of unnecessary and superfluous
detail. This time round, I’ve bitten
the bullet and made use of the OLE2
unit (included with Delphi), along
with ShellAPI and ShellObj (which
are on this month’s disk along with
the component source code).
These units contain all the CLSID
definitions and interface declara-
tions needed to communicate with
the shell via COM and undoubtedly
we’ll be looking at more of these
interfaces in a future article.

As with all COM programming,
it’s important to ensure that the
CoInitialize routine is called at
some point before making any
other calls involving the COM
library. This is done by the simple
expedient of placing the library in-
itialisation call into the compo-
nent’s constructor. Likewise, we
call CoUninitialize when the object
is destroyed. Although, strictly
speaking, only one library initiali-
sation call is needed, the COM li-
brary internally keeps track of how
many CoInitialize calls are issued
and the library is only released
from memory when a matching
number of CoUninitialize calls
have been received. By doing
things this way, we really don’t
care whether or not the host
program uses COM/OLE.

The class definition for TShell-
Link is very straightforward and,
unlike a lot of components, there
are no read/write procedures asso-
ciated with the published proper-
ties. The only exception to this is
the SetLinkPath routine which is in-
voked when the LinkPath property
is changed. We need to get control
at this point because, as mentioned
earlier, changing LinkPath will
cause the component to look for an
existing link file of the same name,
and update the other property val-
ues as appropriate. This being the
case, interesting things happen
only when the Save routine is
called, or when the LinkPath prop-
erty is altered. We’ll look at these
two scenarios in turn.

Like the Execute method in the
VCL code for the common dialog
wrappers, the Save function

➤ Although the Explorer can create shell links under user control, it’s
important to be able to do this programmatically – especially useful
when writing installer applications.

March 1997 The Delphi Magazine 33

returns True for success and False
for failure. That said, I don’t relig-
iously check the error codes re-
turned from each COM method
call. You might wish to tighten
things up in this respect. The first
job of the Save routine is to call
FixupLinkPath. This takes a ‘user-
friendly’ link file name such as My
Shortcut and converts it into a fully
qualified file name which, in this
case, might be something like

c:\windows\desktop\
 My Shortcut.lnk

The friendly version of the link
path is what gets displayed in the
Object Inspector at design time,
the idea being that the user of the
component neither knows nor
cares where .LNK files are physi-
cally stored, this is all taken care of
by the component.

The FixupLinkPath code checks
to see if the .LNK file extension is
present and, if not, adds it. It then
uses the ExtractFileDrive routine
as a quick and dirty way of seeing
if this is a fully qualified pathname
starting from a drive specification.
If so, then it’s assumed that the

component user wants to specify
an absolute drive and directory lo-
cation for the link file. If there’s no
drive letter, then the GetDeskTop-
Folder routine is called to bolt the
name of the desktop folder onto
the front of the link file path.

The reason I don’t just hardwire
c:\windows\desktop into the code is
because the desktop folder loca-
tion isn’t cast in concrete. It’s pos-
sible to change the folder location
by massaging precisely the regis-
try entries that are used by the
GetDeskTopFolder routine. Don’t do
this at home folks! The GetDeskTop-
Folder code is quite straightfor-
ward and simply fetches the
desktop folder location from the
registry, ensuring that it’s termi-
nated with a backslash.

Having called FixupLinkPath to
get a full name for the proposed
link file, the Save code then calls the
somewhat klunky MultiByte-
ToWideChar routine in order to con-
vert the filename into a wide-char
(Unicode) string. This is necessary
because link files are an example of
OLE persistent files, and the per-
sistent file interface insists upon
filenames in wide-char format.

In order to simplify the code and
provide a couple of reusable rou-
tines, I’ve included two small rou-
tines: GetIShellLink, which returns
an interface pointer to a new in-
stance of IShellLink, and GetIPer-
sistFile which, given a pointer to
an IShellLink interface, returns a
pointer to the persistent file inter-
face for that object. Both these rou-
tines are called with try-finally
blocks to ensure that the Release
methods are called for each of the
interfaces that we retrieve.

The next job is to copy the cur-
rent set of component properties
into the new shell link object. I’ve
used the same type TWindowState
type that the VCL uses to imple-
ment a form’s WindowState property
and arranged for it to default to
wsNormal. While this is likely to be
adequate for most applications,
you may want finer control. If so,
you can implement the full set of
SW_xxxx codes, as documented in
the Windows SDK, and provide a
property which gives access to all
the possible values.

At this point, the link file doesn’t
physically exist on disk. When we
call the Save method (not our Save

➤ Figure 2: When working with shell links, you
can use the Properties dialog (right-click on an
existing shortcut and then select Properties) to
verify that you’re putting the correct
information into your shell link.

➤ Figure 3: Using TShellLink, you can set the LinkPath
property to an existing .LNK file, and the component
will automatically update its properties based on the
contents of the link file.

34 The Delphi Magazine Issue 19

unit ShellLink;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics,
 Controls, Forms, Dialogs;
type
 TShellLink = class(TComponent)
 private
 fTargetPath: String;
 fLinkPath: String;
 fDescription: String;
 fArguments: String;
 fWorkingDirectory: String;
 fWindowState: TWindowState;
 procedure SetLinkPath (const Val: String);
 procedure Resolve (const FullLinkPath: String);
 public
 constructor Create (AOwner: TComponent); override;
 destructor Destroy; override;
 function Save: Boolean;
 published
 property WindowState: TWindowState read fWindowState
 write fWindowState default wsNormal;
 property TargetPath: String read fTargetPath
 write fTargetPath;
 property LinkPath: String read fLinkPath
 write SetLinkPath;
 property Description: String read fDescription
 write fDescription;
 property Arguments: String read fArguments
 write fArguments;
 property WorkingDirectory: String
 read fWorkingDirectory write fWorkingDirectory;
 end;
procedure Register;
implementation
uses Ole2, ShellAPI, ShellObj;
function GetIShellLink: IShellLink;
// Create an instance of the IShellLink interface
begin
 if CoCreateInstance(CLSID_ShellLink, Nil, 1,
 IID_IShellLink, Result) < 0 then
 Exception.Create (’Can’’t get a shell link’);
end;
function GetIPersistFile (link: IShellLink): IPersistFile;
// Given an IShellLink, get the IPersistFile interface.
begin
 if link.QueryInterface (IID_IPersistFile, Result) < 0 then
 Exception.Create (’Can’’t get a persistent file’);
end;
function GetDeskTopFolder: String;
// Return location of Explorer’s “live” desktop data
// Yes, we could use SHGetDesktopFolder, but this is simpler
const
 ShellFolders = ’Software\Microsoft\Windows\’+
 ’CurrentVersion\Explorer\Shell Folders’;
var
 Key: hKey;
 bytes: DWord;
 szDest: array [0..Max_Path - 1] of Char;
begin
 Result := ’’;
 if RegOpenKeyEx (HKey_Current_User, ShellFolders, 0,
 Key_Read, Key) = 0 then
 try
 bytes := sizeof (szDest);
 if RegQueryValueEx (Key, ’Desktop’, Nil, Nil,
 @szDest, @bytes) = 0 then begin
 Result := szDest;
 Result := Result + ’\’;
 end;
 finally
 RegCloseKey (Key);
 end;
end;
function FixUpLinkPath (const LinkPath: String): String;
// Convert user-supplied link path into fully qualified path
begin
 Result := LinkPath;
 if Pos (’.lnk’, LowerCase (Result)) = 0 then
 Result := Result + ’.lnk’;
 { Is this a fully-qualified pathname? }
 if ExtractFileDrive (Result) = ’’ then begin
 if Result[1] = ’\’ then Result := Copy (Result, 2, 255);
 Result := GetDeskTopFolder + Result;
 end;
end;
{ TShellLink }
constructor TShellLink.Create (AOwner: TComponent);
begin
 Inherited Create (AOwner);
 CoInitialize (Nil);
 WindowState := wsNormal;
end;
destructor TShellLink.Destroy;
begin
 CoUninitialize;

 Inherited Destroy;
end;
procedure TShellLink.SetLinkPath (const Val: String);
begin
 if fLinkPath <> Val then begin
 fLinkPath := Val;
 Resolve (FixUpLinkPath (fLinkPath));
 end;
end;
procedure TShellLink.Resolve (const FullLinkPath: String);
var
 swCmd: Integer;
 link: IShellLink;
 persist: IPersistFile;
 FindData: TWin32FindData;
 buff: array [0..511] of Char;
 wLinkPath: array [0..Max_Path-1] of WideChar;
begin
 if FileExists (FullLinkPath) then begin
 { Pathname must be in WideChar format }
 MultiByteToWideChar (cp_ACP, 0, PChar(FullLinkPath),
 -1, wLinkPath, Max_Path);
 { Get a pointer to the wanted interface }
 link := GetIShellLink;
 try
 // First, make sure we can get IPersistentFile
 persist := GetIPersistFile (link);
 try
 // Load the persistent object
 if persist.Load(wLinkPath, stgm_Read) >= 0 then begin
 link.GetPath(buff, sizeof(buff), FindData,
 slgp_ShortPath);
 TargetPath := buff;
 link.GetDescription (buff, sizeof (buff));
 Description := buff;
 link.GetArguments (buff, sizeof (buff));
 Arguments := buff;
 link.GetWorkingDirectory (buff, sizeof (buff));
 WorkingDirectory := buff;
 link.GetShowCmd (swCmd);
 case swCmd of
 sw_Minimize, sw_ShowMinimized:
 fWindowState := wsMinimized;
 sw_ShowMaximized:
 fWindowState := wsMaximized;
 else
 fWindowState := wsNormal;
 end;
 end;
 finally
 persist.Release;
 end;
 finally
 link.Release;
 end;
 end;
end;
function TShellLink.Save: Boolean;
var
 swCmd: Integer;
 link: IShellLink;
 persist: IPersistFile;
 wLinkPath: array [0..Max_Path-1] of WideChar;
begin
 Result := False;
 { LinkPath must be in WideChar format }
 MultiByteToWideChar(cp_ACP, 0,
 PChar(FixupLinkPath(LinkPath)), -1, wLinkPath, Max_Path);
 { Get a pointer to the wanted interface }
 link := GetIShellLink;
 try
 // First, make sure we can get IPersistentFile
 persist := GetIPersistFile (link);
 try
 // Set target and description strings
 link.SetPath (PChar (UpperCase (TargetPath)));
 link.SetDescription (PChar (Description));
 link.SetArguments (PChar (Arguments));
 link.SetWorkingDirectory (PChar (WorkingDirectory));
 case WindowState of
 wsMinimized: link.SetShowCmd (sw_ShowMinimized);
 wsMaximized: link.SetShowCmd (sw_ShowMaximized);
 wsNormal: link.SetShowCmd (sw_ShowNormal);
 end;
 persist.Save (wLinkPath, True);
 Result := True;
 finally
 persist.Release;
 end;
 finally
 link.Release;
 end;
end;
procedure Register;
begin
 RegisterComponents (’Shell Tools’, [TShellLink]);
end;
end.

➤ Listing 1

March 1997 The Delphi Magazine 35

method, but the Save method asso-
ciated with the IPersistInterface!)
the file is written to disk and within
a second or two gets ‘spotted’ by
Explorer and added to the desktop.

The operation of the SetLinkPath
code is very similar except that,
this time, of course, we’re reading
data from a persistent file. Having
checked that the new LinkPath
differs from the existing one, the
property string is updated, Fixu-
pLinkPath is called once more to
produce a fully qualified path-
name, and the private Resolve
method is called to see if the file
exists. If so, the Resolve code goes
through the same steps as before,
converting the filename to wide-
char format, and instantiating
interfaces to IShellLink and IPer-
sistFile. This time, of course, the
Load method is called for the per-
sistent file, and the various fields of
the link file are then used to update
the component properties.

Bugs!
Although this month’s code is (as
far as I know!) bug free, any prob-
lems that you do encounter will be
due, in part, to the fact that the
IShellLink interface has a number
of idiosyncrasies of its own, some
of which I’ve found, some of which
I haven’t, and all of which are un-
documented!

For example, you’ll quickly find
that the Description property ap-
pears to have no effect whatsoever
on the displayed title of the short-
cut in Explorer! Contrary to what
the Microsoft SDK documentation
will tell you, the IShellLink:SetDe-
scription call seems to be reso-
lutely ignored by the shell,
although I’ve verified that the sup-
plied description string is actually
being written into the .LNK file.

If you want to give your shortcut
a name on the desktop such as Link
To Wombat, then you need to ensure
that the name of the .LNK file (as
specified in the LinkPath property)
is Link To Wombat preceded by
whatever other folder name you
might wish to place the shortcut
into. In other words, the user-vis-
ible name of a shell link seems to be
entirely determined by the name of
the .LNK file and has nothing to do

with the so-called description
string. Ho hum.

You’ll also notice that I massage
TargetPath with a call to UpperCase
immediately before calling IShell-
Link:SetPath. If you don’t do this,
you’ll find that things definitely
won’t work as advertised! Without
the call to UpperCase, the shell link
will appear with a ‘My Computer’
icon, and double-clicking it will
bring up a new Explorer window
instead of launching the intended
application. I strongly suspect that
there’s some antique code buried
in the shell which can only validate
the location of the target ex-
ecutable if the entire pathname is
supplied in upper-case. If you find
any other bugs, do let me know!

Next Month:
Explorer Buttons!
Last month we looked at how to
add CoolBars to your application
and populate them with Delphi
components. The accompanying
disk thoughtfully included a share-
ware component which (in con-
junction with the CoolBar) gives an
‘Office97-style’ look to your pro-
grams. I planned to use this compo-
nent in my own applications and
therefore I spent some time exam-
ining it in detail... and unfortu-
nately I found a number of very
serious problems.

For example, if you use a button
colour of anything other than
clBtnFace, the control in question
won’t even draw itself properly.
Despite the claim that “The compo-
nent is very resource friendly”, it
internally allocates a TTimer com-
ponent and uses timer events to
get control and decide whether or
not it should draw itself in an active
or inactive state as the mouse is
moved in and out of the control:
you’ll see a great deal of flickering
taking place if you hold the mouse
down over the control and then
drag the mouse (still held down)
outside of the control and around
the form. Worst of all (and almost
unbelievably!) this component al-
locates a hidden TForm component
for every instance of the control
that’s created! You might think
you’ve only got one form in your
application, but if you’re using ten

of these buttons, you’ve actually
got eleven allocated TForms!

I don’t enjoy doing a hatchet-job
on other people’s software, but in
this particular case, I feel that I’m
more than justified. My father used
to say ‘If you want a job doing prop-
erly, do it yourself’ and sadly this
adage often proves to be true.

Accordingly, next month we’ll
look at how to design an Explorer-
style button which really is
resource-friendly and doesn’t re-
quire an associated TTimer or TForm
lurking in the background.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi Pro-
gramming published by Wrox
Press. You can contact Dave as
DaveJewell@msn.com, DSJew-
ell@aol.com or 102354,1572 on
CompuServe.

36 The Delphi Magazine Issue 19

	Shortcut Implementation
	Introducing TShellLink
	How It Works
	Bugs!
	Next Month: Explorer Buttons!

